No stone unturned: An extensive search for cation substitution in lithium-ion batteries

Lithium-ion batteries (LIBs) power all of modern-day electronic devices. However, with the shift from gasoline-powered vehicles to electric counterparts, there is a demand for higher battery capacity. In their quest for higher battery capacity, scientists devised a low-cost computational technique for extensively screening for atomic substitutions in LIBs to improve their discharge capacity, opening doors to the development of novel alloying materials to boost battery life and new energy storage systems. Batteries at


Batteries, Vol. 7, Pages fifty two: Combining the Distribution associated with Relaxation Times from EIS and Time-Domain Data pertaining to Parameterizing Equivalent Circuit Models of Lithium-Ion Batteries

Batteries, Vol. 7, Pages 52: Combining the Distribution of Rest Times from EIS and Time-Domain Data for Parameterizing Equivalent Circuit Models associated with Lithium-Ion Batteries Batteries doi: 10. 3390/batteries7030052 Authors: Leo Wildfeuer Philipp Gieler Alexander Karger ECM are a widely used modeling approach regarding lithium-ion batteries in engineering applications. The RC elements, which display the […]