Skip to content
Menu
Battery technology and materials
  • About us
  • Contact
  • Disclaimer
  • Privacy Policy
Battery technology and materials

Batteries, Vol. 8, Pages 19: Concept Review of a Cloud-Based Smart Battery Management System for Lithium-Ion Batteries: Feasibility, Logistics, and Functionality

Posted on February 18, 2022

Batteries, Vol. 8, Pages 19: Concept Review of a Cloud-Based Smart Battery Management System for Lithium-Ion Batteries: Feasibility, Logistics, and Functionality

Batteries doi: 10.3390/batteries8020019

Authors: Manh-Kien Tran Satyam Panchal Tran Dinh Khang Kirti Panchal Roydon Fraser Michael Fowler

Energy storage plays an important role in the adoption of renewable energy to help solve climate change problems. Lithium-ion batteries (LIBs) are an excellent solution for energy storage due to their properties. In order to ensure the safety and efficient operation of LIB systems, battery management systems (BMSs) are required. The current design and functionality of BMSs suffer from a few critical drawbacks including low computational capability and limited data storage. Recently, there has been some effort in researching and developing smart BMSs utilizing the cloud platform. A cloud-based BMS would be able to solve the problems of computational capability and data storage in the current BMSs. It would also lead to more accurate and reliable battery algorithms and allow the development of other complex BMS functions. This study reviews the concept and design of cloud-based smart BMSs and provides some perspectives on their functionality and usability as well as their benefits for future battery applications. The potential division between the local and cloud functions of smart BMSs is also discussed. Cloud-based smart BMSs are expected to improve the reliability and overall performance of LIB systems, contributing to the mass adoption of renewable energy.

Share on Facebook
Tweet
Follow us
Buy Batteries Online

Recent Posts

  • Batteries, Vol. 8, Pages 38: Evaluation of the Precision from the Identified Equivalent Electric Circuit of LiPePO4 Electric battery through Verified Measurements
  • Batteries, Vol. 8, Pages 39: An Incremental Capacity Parametric Model Based on Logistic Equations for Battery State Estimation and Monitoring
  • Batteries, Vol. 8, Pages thirty seven: Simulation of the Electrochemical Response of Cobalt Hydroxide Electrodes for Energy Storage space
  • Batteries, Vol. 8, Pages thirty six: Artificial Feature Extraction with regard to Estimating State-of-Temperature in Lithium-Ion-Cells Using Various Long Immediate Memory Architectures
  • Batteries, Vol. 8, Pages 35: Method for In-Operando Contaminants of Lithium Ion Electric batteries for Prediction of Impurity-Induced Non-Obvious Cell Damage

Categories

  • Batteries
©2022 Battery technology and materials | WordPress Theme: EcoCoded